Open Access
Med Buccale Chir Buccale
Volume 19, Number 4, novembre 2013
Page(s) 241 - 249
Section Mise au point / Literature review
Published online 14 August 2013
  1. Klagsbrun M, D’Amore P. Regulators of angiogenesis. Ann Rev Physiol 1991;53:217-39. [CrossRef] [Google Scholar]
  2. Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1990;1:61-8. [CrossRef] [Google Scholar]
  3. Sirin Y, Olgac V, Dogru-Abbasoglu S, Tapul L, Aktas S, Soley S. The influence of hyperbaric oxygen treatment on the healing of experimental defects filled with different bone graft substitutes. Int J Med Sci 2011;8:114-25. [CrossRef] [PubMed] [Google Scholar]
  4. Gupta MC, Maitra S. Bone grafts and bone morphogenetic proteins in spine fusion. Cell Tissue Bank 2002;3:255-67. [CrossRef] [PubMed] [Google Scholar]
  5. Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontol 2000 1999;19:74-86. [CrossRef] [PubMed] [Google Scholar]
  6. Kainulainen VT, Sàndor GK, Oikarinen KS, Clokie CM. Zygomatic bone: an additional donor site for alveolar bone reconstruction. Technical note. Int J Oral Maxillofac Implants 2002;17:723-8. [Google Scholar]
  7. Kainulainen VT, Sándor GK, Carmichael RP, Oikarinen KS. Safety of zygomatic bone harvesting: a prospective study of 32 consecutive patients with simultaneous zygomatic bone grafting and 1-stage implant placement. Int J Oral Maxillofac Implants 2005;20:245-52. [PubMed] [Google Scholar]
  8. Nassr A, Khan MH, Ali MH, Espiritu MT, Hanks SE, Lee JY, Donaldson WF, Kang JD. Donor-site complications of autogenous nonvascularized fibula strut graft harvest for anterior cervical corpectomy and fusion surgery: experience with 163 consecutive cases. Spine J 2009;9:893-8. [CrossRef] [PubMed] [Google Scholar]
  9. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma 1989;3:192-5. [CrossRef] [PubMed] [Google Scholar]
  10. Sándor GKB, Nish IA, Carmichael RP. Comparison of conventional surgery with motorized trephine in bone harvest from the anterior iliac crest. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:150-5. [CrossRef] [PubMed] [Google Scholar]
  11. Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 2008;90(Suppl 1):36-42. [CrossRef] [PubMed] [Google Scholar]
  12. Haddad AJ, Peel SA, Clokie CML, Sándor GKB. Closure of rabbit calvarial critical-sized defects using protective composite allogeneic and alloplastic bone substitutes. J Craniofac Surg 2006;17:926-34. [CrossRef] [PubMed] [Google Scholar]
  13. Koutouzis T, Lundgren T. Crestal bone-level changes around implants placed in post extraction sockets augmented with demineralized freeze-dried bone allograft: a retrospective radiographic study. J Periodontol 2010;81:1441-8. [CrossRef] [PubMed] [Google Scholar]
  14. Feighan JE, Davy D, Prewett AB, Steveson S. Induction of bone by demineralized bone matrix gel: a study in a rate femoral defect model. J Orthop Res 1995;13:88. [CrossRef] [Google Scholar]
  15. Precheur HV. Bone graft materials. Dent Clin North Am 2007;51:729-46. [CrossRef] [PubMed] [Google Scholar]
  16. Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl 2008;23:197-212. [CrossRef] [PubMed] [Google Scholar]
  17. Hallman M, Lundgren S, Sennerby L. Histologic analysis of clinical biopsies taken 6 months and 3 years after maxillary sinus floor augmentation with 80% bovine hydroxyapatite and 20% autogenous bone mixed with fibrin glue. Clin Implant Dent Relat Res 2001;3:87-96. [CrossRef] [PubMed] [Google Scholar]
  18. Artzi Z, Nemcovsky CE, Tal H. Efficacy of porous bovine bone mineral in various types of osseous deficiencies: clinical observations and literature review. Int J Periodontics Restorative Dent 2001;21:395-405. [PubMed] [Google Scholar]
  19. Carmagnola D, Berglundh T, Araujo M, Albrektsson T, Lindhe J. Bone healing around implants placed in a jaw defect augmented with Bio-Oss. An experimental study in dogs. J Clin Periodontol 2000;27:799-805. [CrossRef] [Google Scholar]
  20. De Coster P, Browaeys H, De Bruyn H. Healing of extraction sockets filled with BoneCeramic® prior to implant placement: preliminary histological findings. Clin Implant Dent Relat Res 2011;13:34-45. [CrossRef] [PubMed] [Google Scholar]
  21. Döri F, Huszár T, Nikolidakis D, Tihanyi D, Horváth A, Arweiler NB, Gera I, Sculean A. Effect of platelet-rich plasma on the healing of intrabony defects treated with Beta tricalcium phosphate and expanded polytetrafluoroethylene membranes. J Periodontol 2008;79:660-9. [CrossRef] [PubMed] [Google Scholar]
  22. Uckan S, Deniz K, Dayangac E, Araz K, Ozdemir BH. Early implant survival in posterior maxilla with or without beta-tricalcium phosphate sinus floor graft. J Oral Maxillofac Surg 2010;68:1642-5. [CrossRef] [PubMed] [Google Scholar]
  23. Gunepin M, Derache F, Cathelinaud O, Bladé JS, Risso JJ, Blatteau JE, Bédrune B, Hugon M, Rivière D. Intérêt de l’utilisation de l’oxygénothérapie hyperbare en prévention de l’échec implantaire chez le patient irradié. Med Buccale Chir Buccale 2012;18:143-53. [CrossRef] [EDP Sciences] [Google Scholar]
  24. Haute Autorité de Santé (HAS) - service d’évaluation des actes professionnels. Oxygénothérapie hyperbare - janvier 2007 accessible sur le 7 mai 2013. [Google Scholar]
  25. Bec PA, Vignon M, Rouquette-Vincent I. L'oxygénothérapie hyperbare. Oxymag 2000;55:15-20. [Google Scholar]
  26. Borne M, Vincenti-Rouquette I, Saby C, Raynaud L, Brinquin L. Oxygénothérapie hyperbare. Principes et indications. Encyc Med Chir Anesth Réanim 36-940-A-10. Elsevier Masson SAS, Paris, 2009. [Google Scholar]
  27. Tandara AA, Mustoe TA. Oxygen in wound healing - more than a nutrient. World J Surg 2004;28:294-300. [CrossRef] [PubMed] [Google Scholar]
  28. Bocquet J, Bollaert PE. Cicatrisation et oxygénothérapie hyperbare (pp.129-38). In : Wattel F, Mathieu D, ed. Traité de médecine hyperbare. Editions Ellipses, Lonrai, 2002. [Google Scholar]
  29. Hunt TK, Ellison EC, Sen CK. Oxygen: at the foundation of wound healing-introduction. World J Surg 2004;28:291-3. [CrossRef] [PubMed] [Google Scholar]
  30. Broussard CL. Hyperbaric oxygenation and wound healing. J Vasc Nurs 2004;22:42-8. [CrossRef] [PubMed] [Google Scholar]
  31. Shirely P, Ross J. Hyperbaric medicine part 1: theory and practice. Curr Anaesth Crit Care 2001;12:114-20. [CrossRef] [Google Scholar]
  32. Jan AM, Sandor GK, Iera D, Mhawi A, Peel S, Evans W, Clockie CM. Hyperbaric oxygen results in an increase in rabbit calvarial critical size defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:144-9. [CrossRef] [PubMed] [Google Scholar]
  33. Fok TC, Jan A, Peel SA, Evans W, Clokie CM, Sandor GK. Hyperbaric oxygen results in increased vascular endothelial growth factor (VEGF) protein expression in rabbit calvarial critical-sized defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:417-22. [CrossRef] [PubMed] [Google Scholar]
  34. Marx RE, Ehler WJ, Tayapongsak P, Pierce LW. Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg 1990;160:519-24. [CrossRef] [PubMed] [Google Scholar]
  35. Mühlhauser J, Merrill MJ, Pili R, Maeda H, Bacic M, Bewig B, Passaniti A, Edwards NA, Crystal RG, Capogrossi MC. VEGF 165 expressed by a replication-deficient recombinant adenovirus vector induces angiogenesis in vivo. Circ Res 1995;77:1077-86. [CrossRef] [PubMed] [Google Scholar]
  36. Ozaki H, Hayashi H, Vinores SA, Moromizato Y, Campochiaro PA, Oshima K. Intravitreal sustained release of VEGF causes retinal neovascularization in rabbits and breakdown of the blood-retinal barrier in rabbits and primates. Exp Eye Res 1997;64:505-17. [CrossRef] [PubMed] [Google Scholar]
  37. Yeh WL, Lin SS, Yuan LJ, Lee KF, Lee MY, Ueng SW. Effects of hyperbaric oxygen treatment on tendon graft and tendon-bone integration in bone tunnel: biochemical and histological analysis in rabbits. J Orthop Res 2007;25:636-45. [CrossRef] [PubMed] [Google Scholar]
  38. Bauer SM, Bauer RJ, Velazquez OC. Angiogenesis, vasculogenesis, and induction of healing in chronic wounds. Vasc Endovascular Surg 2005;39:293-306. [CrossRef] [PubMed] [Google Scholar]
  39. Glowacki J. Angiogenesis in fracture repair. Clin Orthop Relat Res 1998;Suppl 355:S:82-9. [CrossRef] [Google Scholar]
  40. Marx RE, Johnson RP, Kline SN. Prevention of osteoradionecrosis: a random-ized prospective clinical trial of hyperbaric oxygen versus penicillin. J Am Dent Assoc 1985;111:49-54. [PubMed] [Google Scholar]
  41. Sutthavong S, Jansisyanont P, Boonyopastham N. Oral health care in head and neck cancer. J Med Assoc Thai 2005;88(Suppl 3):S339-53. [Google Scholar]
  42. Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST, Passeri J, Horowitz JR, Symes JF, Isner JM. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 1996;94:3281-90. [CrossRef] [PubMed] [Google Scholar]
  43. Chen WJ, Lai PL, Chang CH, Lee MS, Chen CH, Tai CL. The effect of hyperbaric oxygen therapy on spinal fusion: using the model of posterolateral intertransverse fusion in rabbits. J Trauma 2002;52:333-8. [CrossRef] [PubMed] [Google Scholar]
  44. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 2002;99:9656-61. [CrossRef] [Google Scholar]
  45. Peng H, Usas A, Olshanski A, Ho AM, Gearhart B, Cooper GM, Huard J. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 2005;20:2017-27. [Google Scholar]
  46. Sautier JM. Genetic and molecular regulation of bone regeneration. Alpha Omegan 2003;96:16-8. [PubMed] [Google Scholar]
  47. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 2005;9:777-94. [CrossRef] [PubMed] [Google Scholar]
  48. Nanka O, Valasek P, Dvorakova M, Grim M. Experimental hypoxia and embryonic angiogenesis. Dev Dyn 2006;235:723-33. [CrossRef] [PubMed] [Google Scholar]
  49. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359:843-5. [CrossRef] [PubMed] [Google Scholar]
  50. Hunt TK, Zederfeldt B, Goldstick TK. Oxygen and healing. Am J Surg 1969;118:521-5. [CrossRef] [PubMed] [Google Scholar]
  51. Tuncay OC, Ho D, Barker MK. Oxygen tension regulates osteoblast function. Am J Orthod Dentofacial Orthop 1994;105:457-63. [CrossRef] [PubMed] [Google Scholar]
  52. Warren SM, Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Bouletreau PJ, Longaker MT. Hypoxia regulates osteoblast gene expression. J Surg Res 2001;99:147-55. [CrossRef] [PubMed] [Google Scholar]
  53. Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Gittes GK, Longaker MT. Hypoxia increases insulinlike growth factor gene expression in rat osteoblasts. Ann Plast Surg 2000;44:529-34; discussion 534-5. [CrossRef] [PubMed] [Google Scholar]
  54. Kang TS, Gorti GK, Quan SY, Ho M, Koch RJ. Effect of hyperbaric oxygen on the growth factor profile of fibroblasts. Arch Facial Plast Surg 2004;6:31-5. [CrossRef] [PubMed] [Google Scholar]
  55. Hunt TK, Pai MP. The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg Gynecol Obstet 1972;135:561-7. [PubMed] [Google Scholar]
  56. Silver IA. Local and systemic factors which affect the proliferation of fibroblasts (pp. 521-3). In Biology of the fibroblast. Academic Press, London and New York, 1973. [Google Scholar]
  57. Bassett CA. Current concepts of bone formation. J Bone Joint Surg 1962;44:1217-44. [Google Scholar]
  58. Muhonen A, Peltomaki T, Hinkka S, Happonen RP. Effect of mandibular distraction osteogenesis on temporomandibular joint after previous irradiation and hyperbaric oxygenation. Int J Oral Maxillofac Surg 2002;31:397-404. [CrossRef] [PubMed] [Google Scholar]
  59. Muhonen A, Muhonen J, Lindholm TC, Minn H, Klossner J, Kulmala J, Happonen RP. Osteodistraction of a previously irradiated mandible with or without adjunctive hyperbaric oxygenation: an experimental study in rabbits. Int J Oral Maxillofac Surg 2002;31:519-24. [CrossRef] [PubMed] [Google Scholar]
  60. Muhonen A, Haaparanta M, Grönroos T, Bergman J, Knuuti J, Hinkka S, Happonen RP. Osteoblastic activity and neoangiogenesis in distracted bone of irradiated rabbit mandible with or without hyperbaric oxygen treatment. Int J Oral Maxillofac Surg 2004;33:173-8. [CrossRef] [PubMed] [Google Scholar]
  61. Gokce S, Bengi AO, Akin E, Karacay S, Sagdic D, Kurkcu M, Gokce HS. Effects of hyperbaric oxygen during experimental tooth movement. Angla Orthodontist 2008;78:304-8. [CrossRef] [Google Scholar]
  62. Wu D, Malda J, Carwford R, Xiao Y. Effects of hyperbaric oxygen on proliferation and differentiation of osteoblasts from human alveolar bone. Connect Tissue Res 2007;48:206-13. [CrossRef] [PubMed] [Google Scholar]
  63. Hirao M, Tamai N, Tsumaki N, Yoshikawa H, Myoui A. Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J Biol Chem 2006;281:31079-92. [CrossRef] [PubMed] [Google Scholar]
  64. Shaw JK, Bassett CA. The effect of varying oxygen concentrations on osteogenesis and embryonic cartilage in vitro. J Bone Joint Surg Am 1967;49:73-80. [PubMed] [Google Scholar]
  65. Clokie CM, Moghadam H, Jackson MT, Sàndor GK. Closure of critical size defects with allogenic and alloplastic bone substitutes. J Craniofac Surg 2002;13:111-21. [CrossRef] [PubMed] [Google Scholar]
  66. Moghadam HG, Sàndor GK, Holmes HI, Clokie CM. Histomorphometric evaluation of bone regeneration using allogeneic and alloplastic bone substitutes. J Oral Maxillofac Surg 2004;62:202-13. [CrossRef] [PubMed] [Google Scholar]
  67. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986;205:299-308. [PubMed] [Google Scholar]
  68. Coulson DB, Ferguson AB Jr, Diehl RC Jr. Effect of hyperbaric oxygen on the healing femur of the rat. Surg Forum 1966;17:449-450. [PubMed] [Google Scholar]
  69. Inoue O, Isa S, Nohara A, Sunagawa M, Okuda Y. Bone histomorphometric study on callus formation under hyperbaric oxygenation at osteotomised tibia in the dog. Undersea Hyperb Med 2000;27(Suppl):36. [Google Scholar]
  70. Tkachenko SS, Rutskii VV, Tikhilov RM, Vovchenko VI. Normalization of bone regeneration by oxygen barotherapy. Vestn Khir Im I I Grek 1988;140:97-100. [Google Scholar]
  71. Dahlin C, Linde A, Rockert H. Stimulation of early bone formation by the combination of an osteopromotive membrane technique and hyperbaric oxygen. Scand J Plast Reconstr Surg Hand Surg 1993;27:103-8. [CrossRef] [PubMed] [Google Scholar]
  72. Tripathi KK, Moorthy A, Karai RC, Rao G, Ghosh PC. Effect of hyperbaric oxygen on bone healing after enucleation of mandibular cysts: a modified case-control study. Diving Hyperb Med 2011;41:195-201. [PubMed] [Google Scholar]
  73. Nilsson P, Alberktsson T, Granstrom G, Rockert HO. The effects of hyperbaric oxygen treatment on bone regeneration: an experimental study using bone harvest chamber in the rabbit. Int J Oral Maxillofac Impl 1988;3:43-8. [Google Scholar]
  74. Nilsson LP. Effects of hyperbaric oxygen treatment on bone healing. An experimental study in the rat mandible and the rabbit tibia. Swed Dent J 1989;64:1-33. [Google Scholar]
  75. Granstrom G, Nilsson LP, Rockert H, Magnusson BC. Experimental mandibular fracture. Effect on bone healing after treatment with hyperbaric oxygen (pp.290-7). In Bitterman N, Lincoln R eds. Proc XVth EUBS scientific meeting, Eilat, Israel, 1989. [Google Scholar]
  76. Wilcox JW, Kolodny SL. Acceleration of healing of maxillary and mandibular osteotomies by use of hyperbaric oxygen. Oral Surg 1976;41:423-9. [CrossRef] [Google Scholar]
  77. Ueng SW, Lee SS, Lin SS, Wang CR, Liu SJ, Yang HF, Tai CL, Shih CH. Bone healing of tibial lengthening is enhanced by hyperbaric oxygen therapy: a study of bone mineral density and torsional strength on rabbits. J Trauma 1998;44:676-81. [CrossRef] [PubMed] [Google Scholar]
  78. Jan A, Sandor GK, Brkovic BB, Peel S, Kim YD, Wia W-Z, Evans W, Clokie CM. Effect of hyperbaric oxygen on demineralized bone matrix and biphasic calcium phosphate bone substitutes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:59-66. [CrossRef] [PubMed] [Google Scholar]
  79. Jan A, Sándor GK, Brkovic BB, Peel SA, Clokie CM. Effects of hyperbaric oxygen on grafted and non-grafted on calvarial critical-sized defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:157-63. [CrossRef] [PubMed] [Google Scholar]
  80. Hislop WS, Finlay PM, Moos KF. A preliminary study into the uses of anorganic bone in oral and maxillofacial surgery. Br J Oral Maxillofac Surg 1993;31:149-53. [CrossRef] [PubMed] [Google Scholar]
  81. Annane D, Depondt J, Aubert P, Villart M, Gehanno P, Gajdos P, Chevret S. Hyperbaric oxygen therapy for radionecrosis of the jaw: a randomized, placebo-controlled, double-blind trial from the ORN96 study group. J Clin Oncol 2004;22:4893-900. [CrossRef] [PubMed] [Google Scholar]
  82. Maier A, Gaggl A, Klemen H, Santler G, Anegg U, Fell B, Kärcher H, Smolle-Jüttner FM, Friehs GB. Review of severe osteradionecrosis treated by surgery alone or surgery with postoperative hyperbaric oxygenation. Br J Oral Maxillofac Surg 2000;38:173-6. [CrossRef] [PubMed] [Google Scholar]
  83. Bennett MH, Stanford R, Turner R. Hyperbaric oxygen therapy for promoting fracture healing and treating fracture non-union. Cochrane Database Syst Rev 2005: CD004712. [Google Scholar]
  84. Butler J, Foex B. Best evidence topic report. Hyperbaric oxygen therapy in acute fracture management. Emerg Med J 2006;23:571-2. [Google Scholar]
  85. Bassett CA, Herrmann I. Influence of oxygen concentration and mechanical factors on differentiation of connective tissues in vitro. Nature 1961;190:460-1. [CrossRef] [PubMed] [Google Scholar]
  86. Esposito M, Grusovin MG, Worthington HV, Coulthard P. Interventions for replacing missing teeth: bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev 2006:CD003607. [Google Scholar]
  87. Laden G. Hyperbaric oxygen therapy for radionecrosis: clear advice from confusing data. J Clin Oncol 2005;23:4465; author reply 4466-8. [CrossRef] [PubMed] [Google Scholar]
  88. Barth E, Sullivan T, Berg E. Animal model for evaluating bone repair with and without adjunctive hyperbaric oxygen therapy (HBP): comparing dose schedules. J Invest Surg 1990;3:387-92. [CrossRef] [PubMed] [Google Scholar]
  89. Penttinen R, Niinikoski J, Kulonen E. Hyperbaric oxygenation and fracture healing. A biochemical study with rats. Acta Chir Scand 1972;138:39-44. [Google Scholar]
  90. Sawai T, Niimi A, Takahashi H, Ueda M. Histologic study of the effect of hyperbaric oxygen therapy on autogenous free bone grafts. J Oral Maxillofac Surg 1996;54:975-81. [CrossRef] [PubMed] [Google Scholar]
  91. Wray JB, Rogers LS. Effect of hyperbaric oxygenation upon fracture healing in the rat. J Surg Res 1968;8:373-8. [CrossRef] [PubMed] [Google Scholar]
  92. Marx RE, Stern D. Management of irradiated patients and osteonecrosis (pp.375-94). In Oral and maxillofacial pathology. A rational for diagnosis and treatment. Quintessence Publishing Co Inc, Carol Stream, 2003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.